In the previous chapter, we have shown that K-means is generally a good choice when the geometry of the clusters is convex. However, this algorithm has two main limitations: the metric is always Euclidean, and it's not very robust to outliers. The first element is obvious, while the second one is a direct consequence of the nature of the centroids. In fact, K-means chooses centroids as actual means that cannot be part of the dataset. Hence, when a cluster has some outliers, the mean is influenced and moved proportionally toward them. The following diagram shows an example where the presence of a few outliers forces the centroid to reach a position outside the dense region:
K-medoids was proposed (in Clustering by means of Medoids, Kaufman L., Rousseeuw P.J., in Statistical Data Analysis Based on...