Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning with Apache Spark

You're reading from   Hands-On Deep Learning with Apache Spark Build and deploy distributed deep learning applications on Apache Spark

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788994613
Length 322 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Guglielmo Iozzia Guglielmo Iozzia
Author Profile Icon Guglielmo Iozzia
Guglielmo Iozzia
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. The Apache Spark Ecosystem FREE CHAPTER 2. Deep Learning Basics 3. Extract, Transform, Load 4. Streaming 5. Convolutional Neural Networks 6. Recurrent Neural Networks 7. Training Neural Networks with Spark 8. Monitoring and Debugging Neural Network Training 9. Interpreting Neural Network Output 10. Deploying on a Distributed System 11. NLP Basics 12. Textual Analysis and Deep Learning 13. Convolution 14. Image Classification 15. What's Next for Deep Learning? 16. Other Books You May Enjoy Appendix A: Functional Programming in Scala 1. Appendix B: Image Data Preparation for Spark

Use cases

RNNs have several use cases. Here is a list of the most frequently used:

  • Language modelling and text generation: This is the attempt to predict the likelihood of the next word, given a sequence of words. This is useful for language translation: the most likely sentence would be the one that is correct.
  • Machine translation: This is the attempt to translate text from one language to another.
  • Anomaly detection in time series: It has been demonstrated that LSTM networks in particular are useful for learning sequences containing longer term patterns of unknown length, due to their ability to maintain long-term memory. For this reason they are useful for anomaly or fault detection in time series. Practical use cases are in log analysis and sensor data analysis.
  • Speech recognition: This is the attempt to predict phonetic segments based on input sound waves and then to formulate...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime