Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning for IoT

You're reading from   Hands-On Deep Learning for IoT Train neural network models to develop intelligent IoT applications

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher Packt
ISBN-13 9781789616132
Length 308 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Aditya Trivedi Aditya Trivedi
Author Profile Icon Aditya Trivedi
Aditya Trivedi
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Dr. Mohammad Abdur Razzaque Dr. Mohammad Abdur Razzaque
Author Profile Icon Dr. Mohammad Abdur Razzaque
Dr. Mohammad Abdur Razzaque
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks FREE CHAPTER
2. The End-to-End Life Cycle of the IoT 3. Deep Learning Architectures for IoT 4. Section 2: Hands-On Deep Learning Application Development for IoT
5. Image Recognition in IoT 6. Audio/Speech/Voice Recognition in IoT 7. Indoor Localization in IoT 8. Physiological and Psychological State Detection in IoT 9. IoT Security 10. Section 3: Advanced Aspects and Analytics in IoT
11. Predictive Maintenance for IoT 12. Deep Learning in Healthcare IoT 13. What's Next - Wrapping Up and Future Directions 14. Other Books You May Enjoy

To get the most out of this book

Readers will require the following hardware with an Intel Xenon CPU E5-1650 v3@3.5 GHz and 32 GB RAM with GPU support and Raspberry Pi 3. Additionally, some basic knowledge of Python and its libraries, such as pandas, NumPy, Keras, TensorFlow, scikit-learn, Matplotlib, Seaborn, OpenCV, and Beautiful Soup 4 will be helpful to grasp the concepts throughout the chapters.

Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you. You can download the code files by following these steps:

  1. Log in or register at www.packt.com.
  2. Select the SUPPORT tab.
  3. Click on Code Downloads & Errata.
  4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR/7-Zip for Windows
  • Zipeg/iZip/UnRarX for Mac
  • 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-IoT. In case there's an update to the code, it will be updated on the existing GitHub repository. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

Conventions used

There are a number of text conventions used throughout this book. CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "For the exploration, we can run image_explorer.py on the dataset as follows."

A block of code is set as follows:

# Import the required modules
import urllib
from bs4 import BeautifulSoup
from selenium import webdriver
import os, os.path
import simplejson

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import scale
from keras.models import Sequential

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see on screen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Google Chrome | More tools | Developer tools (in Windows OS)."

Warnings or important notes appear like this.
Tips and tricks appear like this.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image