Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning for IoT

You're reading from   Hands-On Deep Learning for IoT Train neural network models to develop intelligent IoT applications

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher Packt
ISBN-13 9781789616132
Length 308 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Aditya Trivedi Aditya Trivedi
Author Profile Icon Aditya Trivedi
Aditya Trivedi
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Dr. Mohammad Abdur Razzaque Dr. Mohammad Abdur Razzaque
Author Profile Icon Dr. Mohammad Abdur Razzaque
Dr. Mohammad Abdur Razzaque
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks FREE CHAPTER
2. The End-to-End Life Cycle of the IoT 3. Deep Learning Architectures for IoT 4. Section 2: Hands-On Deep Learning Application Development for IoT
5. Image Recognition in IoT 6. Audio/Speech/Voice Recognition in IoT 7. Indoor Localization in IoT 8. Physiological and Psychological State Detection in IoT 9. IoT Security 10. Section 3: Advanced Aspects and Analytics in IoT
11. Predictive Maintenance for IoT 12. Deep Learning in Healthcare IoT 13. What's Next - Wrapping Up and Future Directions 14. Other Books You May Enjoy

Indoor Localization in IoT

Many IoT applications, such as indoor navigation and location-aware marketing by retailers, smart homes, smart campuses, and hospitals, rely on indoor localization. The input data generated from such applications generally comes from numerous sources such as infrared, ultrasound, Wi-Fi, RFID, ultrawideband, Bluetooth, and so on.

The communication fingerprint of those devices and technologies, such as Wi-Fi fingerprinting data, can be analyzed using DL models to predict the location of the device or user in indoor environments. In this chapter, we will discuss how DL techniques can be used for indoor localization in IoT applications in general with a hands-on example. Furthermore, we will discuss some deployment settings for indoor localization services in IoT environments. The following topics will be briefly covered in this chapter:

  • Introducing indoor...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image