Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Computer Vision with TensorFlow 2

You're reading from   Hands-On Computer Vision with TensorFlow 2 Leverage deep learning to create powerful image processing apps with TensorFlow 2.0 and Keras

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781788830645
Length 372 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Eliot Andres Eliot Andres
Author Profile Icon Eliot Andres
Eliot Andres
Benjamin Planche Benjamin Planche
Author Profile Icon Benjamin Planche
Benjamin Planche
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: TensorFlow 2 and Deep Learning Applied to Computer Vision FREE CHAPTER
2. Computer Vision and Neural Networks 3. TensorFlow Basics and Training a Model 4. Modern Neural Networks 5. Section 2: State-of-the-Art Solutions for Classic Recognition Problems
6. Influential Classification Tools 7. Object Detection Models 8. Enhancing and Segmenting Images 9. Section 3: Advanced Concepts and New Frontiers of Computer Vision
10. Training on Complex and Scarce Datasets 11. Video and Recurrent Neural Networks 12. Optimizing Models and Deploying on Mobile Devices 13. Migrating from TensorFlow 1 to TensorFlow 2 14. Assessments 15. Other Books You May Enjoy

Run the Jupyter notebooks on your machine

To read or run these documents on your machine, you should first install Jupyter Notebook. For those who already use Anaconda (https://www.anaconda.com) to manage and deploy their Python environments (as we will recommend in this book), Jupyter Notebook should be directly available (as it is installed with Anaconda). For those using other Python distributions and those not familiar with Jupyter Notebook, we recommend having a look at the documentation, which provides installation instructions and tutorials (https://jupyter.org/documentation).

Once Jupyter Notebook is installed on your machine, navigate to the directory containing the book's code files, open a terminal, and execute the following command:

$ jupyter notebook

The web interface should open in your default browser. From there, you should be able to navigate the directory and open the Jupyter notebooks provided, either to read, execute, or edit them.

Some documents contain advanced experiments that can be extremely compute-intensive (such as the training of recognition algorithms over large datasets). Without the proper acceleration hardware (that is, without compatible NVIDIA GPUs, as explained in Chapter 2, TensorFlow Basics and Training a Model), these scripts can take hours or even days (even with compatible GPUs, the most advanced examples can take quite some time).
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime