Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Machine Learning

You're reading from   Graph Machine Learning Take graph data to the next level by applying machine learning techniques and algorithms

Arrow left icon
Product type Paperback
Published in Jun 2021
Publisher Packt
ISBN-13 9781800204492
Length 338 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Aldo Marzullo Aldo Marzullo
Author Profile Icon Aldo Marzullo
Aldo Marzullo
Claudio Stamile Claudio Stamile
Author Profile Icon Claudio Stamile
Claudio Stamile
Enrico Deusebio Enrico Deusebio
Author Profile Icon Enrico Deusebio
Enrico Deusebio
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 – Introduction to Graph Machine Learning
2. Chapter 1: Getting Started with Graphs FREE CHAPTER 3. Chapter 2: Graph Machine Learning 4. Section 2 – Machine Learning on Graphs
5. Chapter 3: Unsupervised Graph Learning 6. Chapter 4: Supervised Graph Learning 7. Chapter 5: Problems with Machine Learning on Graphs 8. Section 3 – Advanced Applications of Graph Machine Learning
9. Chapter 6: Social Network Graphs 10. Chapter 7: Text Analytics and Natural Language Processing Using Graphs 11. Chapter 8:Graph Analysis for Credit Card Transactions 12. Chapter 9: Building a Data-Driven Graph-Powered Application 13. Chapter 10: Novel Trends on Graphs 14. Other Books You May Enjoy

Chapter 2: Graph Machine Learning

Machine learning is a subset of artificial intelligence that aims to provide systems with the ability to learn and improve from data. It has achieved impressive results in many different applications, especially where it is difficult or unfeasible to explicitly define rules to solve a specific task. For instance, we can train algorithms to recognize spam emails, translate sentences into other languages, recognize objects in an image, and so on.

In recent years, there has been an increasing interest in applying machine learning to graph-structured data. Here, the primary objective is to automatically learn suitable representations to make predictions, discover new patterns, and understand complex dynamics in a better manner with respect to "traditional" machine learning approaches.

This chapter will first review some of the basic machine learning concepts. Then, an introduction to graph machine learning will be provided, with a particular...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime