Go is the perfect language for machine learning. Its simple syntax helps to clearly describe complex algorithms, but does not obscure developers from understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but that can also have its performance measured.
The book begins by guiding you in setting up your machine learning environment with Go libraries and capabilities. You will then plunge into regression analysis of a real-life house pricing dataset and build a classification model in Go to classify emails as spam or ham. Using Gonum, Gorgonia, and STL, you will explore time series analysis, along with decomposition and how to clean up your personal Twitter timeline by clustering tweets. In addition to this, you will learn how to recognize handwriting using neural networks and convolutional neural networks, both of which are deep learning techniques. Once you've covered all the techniques, you'll learn how to choose the most appropriate machine learning algorithms to use for your projects with the help of a facial detection project.
By the end of this book, you will have developed a solid machine learning mindset, a strong hold on the powerful Go libraries, and a sound understanding of the practical implementations of machine learning algorithms in real-world projects.