Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with PyTorch

You're reading from   Deep Learning with PyTorch A practical approach to building neural network models using PyTorch

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788624336
Length 262 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vishnu Subramanian Vishnu Subramanian
Author Profile Icon Vishnu Subramanian
Vishnu Subramanian
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Deep Learning Using PyTorch FREE CHAPTER 2. Building Blocks of Neural Networks 3. Diving Deep into Neural Networks 4. Fundamentals of Machine Learning 5. Deep Learning for Computer Vision 6. Deep Learning with Sequence Data and Text 7. Generative Networks 8. Modern Network Architectures 9. What Next? 10. Other Books You May Enjoy

Creating and exploring a VGG16 model

PyTorch provides a set of trained models in its torchvision library. Most of them accept an argument called pretrained when True, which downloads the weights tuned for the ImageNet classification problem. Let's look at the code snippet that creates a VGG16 model:

from torchvision import models
vgg = models.vgg16(pretrained=True)

Now we have our VGG16 model with all the pre-trained weights ready to be used. When the code is run for the first time, it could take several minutes, depending on your internet speed. The size of the weights could be around 500 MB. We can take a quick look at the VGG16 model by printing it. Understanding how these networks are implemented turns out to be very useful when we use modern architectures. Let's take a look at the model:

VGG (
  (features): Sequential (
    (0): Conv2d(3, 64, kernel_size=(3, 3)...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image