Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning for Natural Language Processing

You're reading from   Deep Learning for Natural Language Processing Solve your natural language processing problems with smart deep neural networks

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher
ISBN-13 9781838550295
Length 372 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Karthiek Reddy Bokka Karthiek Reddy Bokka
Author Profile Icon Karthiek Reddy Bokka
Karthiek Reddy Bokka
Monicah Wambugu Monicah Wambugu
Author Profile Icon Monicah Wambugu
Monicah Wambugu
Tanuj Jain Tanuj Jain
Author Profile Icon Tanuj Jain
Tanuj Jain
Shubhangi Hora Shubhangi Hora
Author Profile Icon Shubhangi Hora
Shubhangi Hora
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

About the Book 1. Introduction to Natural Language Processing FREE CHAPTER 2. Applications of Natural Language Processing 3. Introduction to Neural Networks 4. Foundations of Convolutional Neural Network 5. Recurrent Neural Networks 6. Gated Recurrent Units (GRUs) 7. Long Short-Term Memory (LSTM) 8. State-of-the-Art Natural Language Processing 9. A Practical NLP Project Workflow in an Organization 1. Appendix

Chapter 6: Foundations of GRUs

Activity 7: Develop a sentiment classification model using Simple RNN

Solution:

  1. Load the dataset.

    from keras.datasets import imdb

    max_features = 10000

    maxlen = 500

    (train_data, y_train), (test_data, y_test) = imdb.load_data(num_words=max_features)

    print('Number of train sequences: ', len(train_data))

    print('Number of test sequences: ', len(test_data))

  2. Pad sequences so that each sequence has the same number characters.

    from keras.preprocessing import sequence

    train_data = sequence.pad_sequences(train_data, maxlen=maxlen)

    test_data = sequence.pad_sequences(test_data, maxlen=maxlen)

  3. Define and compile model using SimpleRNN with 32 hidden units.

    from keras.models import Sequential

    from keras.layers import Embedding

    from keras.layers import Dense

    from keras.layers import GRU

    from keras.layers import SimpleRNN

    model = Sequential()

    model.add(Embedding(max_features, 32))

    model.add(SimpleRNN(32))

    model.add(Dense(1, activation='sigmoid'))

    model.compile(optimizer='rmsprop',

    loss='binary_crossentropy',

    metrics=['acc'])

    history = model.fit(train_data, y_train,

    epochs=10,

    batch_size=128,

    validation_split=0.2)

  4. Plot the validation and training accuracy and losses.

    import matplotlib.pyplot as plt

    def plot_results(history):

    acc = history.history['acc']

    val_acc = history.history['val_acc']

    loss = history.history['loss']

    val_loss = history.history['val_loss']

    epochs = range(1, len(acc) + 1)

    plt.plot(epochs, acc, 'bo', label='Training Accuracy')

    plt.plot(epochs, val_acc, 'b', label='Validation Accuracy')

    plt.title('Training and validation Accuracy')

    plt.legend()

    plt.figure()

    plt.plot(epochs, loss, 'bo', label='Training Loss')

    plt.plot(epochs, val_loss, 'b', label='Validation Loss')

    plt.title('Training and validation Loss')

    plt.legend()

    plt.show()

  5. Plot the model

    plot_results(history)

    The output is as follows:

Figure 6.29: Training and validation accuracy loss
Figure 6.29: Training and validation accuracy loss

Activity 8: Train your own character generation model with a dataset of your choice

Solution:

  1. Load the text file and import the necessary Python packages and classes.

    import sys

    import random

    import string

    import numpy as np

    from keras.models import Sequential

    from keras.layers import Dense

    from keras.layers import LSTM, GRU

    from keras.optimizers import RMSprop

    from keras.models import load_model

    # load text

    def load_text(filename):

    with open(filename, 'r') as f:

    text = f.read()

    return text

    in_filename = 'drive/shakespeare_poems.txt' # Add your own text file here

    text = load_text(in_filename)

    print(text[:200])

    The output is as follows:

    Figure 6.30: Sonnets from Shakespeare
    Figure 6.30: Sonnets from Shakespeare
  2. Create dictionaries mapping characters to indices and vice-versa.

    chars = sorted(list(set(text)))

    print('Number of distinct characters:', len(chars))

    char_indices = dict((c, i) for i, c in enumerate(chars))

    indices_char = dict((i, c) for i, c in enumerate(chars))

    The output is as follows:

    Figure 6.31: Distinct character count
    Figure 6.31: Distinct character count
  3. Create sequences from the text.

    max_len_chars = 40

    step = 3

    sentences = []

    next_chars = []

    for i in range(0, len(text) - max_len_chars, step):

    sentences.append(text[i: i + max_len_chars])

    next_chars.append(text[i + max_len_chars])

    print('nb sequences:', len(sentences))

    The output is as follows:

    Figure 6.32: nb sequence count
    Figure 6.32: nb sequence count
  4. Make input and output arrays to feed the model.

    x = np.zeros((len(sentences), max_len_chars, len(chars)), dtype=np.bool)

    y = np.zeros((len(sentences), len(chars)), dtype=np.bool)

    for i, sentence in enumerate(sentences):

    for t, char in enumerate(sentence):

    x[i, t, char_indices[char]] = 1

    y[i, char_indices[next_chars[i]]] = 1

  5. Build and train the model using GRU and save the model.

    print('Build model...')

    model = Sequential()

    model.add(GRU(128, input_shape=(max_len_chars, len(chars))))

    model.add(Dense(len(chars), activation='softmax'))

    optimizer = RMSprop(lr=0.01)

    model.compile(loss='categorical_crossentropy', optimizer=optimizer)

    model.fit(x, y,batch_size=128,epochs=10)

    model.save("poem_gen_model.h5")

  6. Define sampling and generation functions.

    def sample(preds, temperature=1.0):

    # helper function to sample an index from a probability array

    preds = np.asarray(preds).astype('float64')

    preds = np.log(preds) / temperature

    exp_preds = np.exp(preds)

    preds = exp_preds / np.sum(exp_preds)

    probas = np.random.multinomial(1, preds, 1)

    return np.argmax(probas)

  7. Generate text.

    from keras.models import load_model

    model_loaded = load_model('poem_gen_model.h5')

    def generate_poem(model, num_chars_to_generate=400):

    start_index = random.randint(0, len(text) - max_len_chars - 1)

    generated = ''

    sentence = text[start_index: start_index + max_len_chars]

    generated += sentence

    print("Seed sentence: {}".format(generated))

    for i in range(num_chars_to_generate):

    x_pred = np.zeros((1, max_len_chars, len(chars)))

    for t, char in enumerate(sentence):

    x_pred[0, t, char_indices[char]] = 1.

    preds = model.predict(x_pred, verbose=0)[0]

    next_index = sample(preds, 1)

    next_char = indices_char[next_index]

    generated += next_char

    sentence = sentence[1:] + next_char

    return generated

    generate_poem(model_loaded, 100)

    The output is as follows:

Figure 6.33: Generated text output
Figure 6.33: Generated text output
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime