Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Codeless Time Series Analysis with KNIME

You're reading from   Codeless Time Series Analysis with KNIME A practical guide to implementing forecasting models for time series analysis applications

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781803232065
Length 392 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Daniele Tonini Daniele Tonini
Author Profile Icon Daniele Tonini
Daniele Tonini
Maarit Widmann Maarit Widmann
Author Profile Icon Maarit Widmann
Maarit Widmann
Corey Weisinger Corey Weisinger
Author Profile Icon Corey Weisinger
Corey Weisinger
KNIME AG KNIME AG
Author Profile Icon KNIME AG
KNIME AG
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Time Series Basics and KNIME Analytics Platform
2. Chapter 1: Introducing Time Series Analysis FREE CHAPTER 3. Chapter 2: Introduction to KNIME Analytics Platform 4. Chapter 3: Preparing Data for Time Series Analysis 5. Chapter 4: Time Series Visualization 6. Chapter 5: Time Series Components and Statistical Properties 7. Part 2: Building and Deploying a Forecasting Model
8. Chapter 6: Humidity Forecasting with Classical Methods 9. Chapter 7: Forecasting the Temperature with ARIMA and SARIMA Models 10. Chapter 8: Audio Signal Classification with an FFT and a Gradient-Boosted Forest 11. Chapter 9: Training and Deploying a Neural Network to Predict Glucose Levels 12. Chapter 10: Predicting Energy Demand with an LSTM Model 13. Chapter 11: Anomaly Detection – Predicting Failure with No Failure Examples 14. Part 3: Forecasting on Mixed Platforms
15. Chapter 12: Predicting Taxi Demand on the Spark Platform 16. Chapter 13: GPU Accelerated Model for Multivariate Forecasting 17. Chapter 14: Combining KNIME and H2O to Predict Stock Prices 18. Answers 19. Other Books You May Enjoy

Resampling and granularity

Time series data has its own set of common data cleansing and preprocessing steps, and these are especially important when working with IoT data. Sensors often produce data with gaps, outliers, or missing values. It’s not necessarily because sensors are less reliable than other data sources, but the sheer frequency with which we receive data points means we’re more likely to have these types of errors.

In the next few sections, we’ll recap some of the most common techniques we apply when preparing our Time Series data for analysis and modeling: aligning timestamps, correcting missing values, and aggregating.

Aligning data timestamps

The most common issue I’ve run into when analyzing IoT, specifically when plugging directly into a sensor, is irregularly spaced timestamps. For some types of analysis, this may not be a problem. Some of the methods in this chapter (mean value forecast, naïve forecast, and linear regression...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime