Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Statistical Models in Python

You're reading from   Building Statistical Models in Python Develop useful models for regression, classification, time series, and survival analysis

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781804614280
Length 420 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Huy Hoang Nguyen Huy Hoang Nguyen
Author Profile Icon Huy Hoang Nguyen
Huy Hoang Nguyen
Paul N Adams Paul N Adams
Author Profile Icon Paul N Adams
Paul N Adams
Stuart J Miller Stuart J Miller
Author Profile Icon Stuart J Miller
Stuart J Miller
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Part 1:Introduction to Statistics
2. Chapter 1: Sampling and Generalization FREE CHAPTER 3. Chapter 2: Distributions of Data 4. Chapter 3: Hypothesis Testing 5. Chapter 4: Parametric Tests 6. Chapter 5: Non-Parametric Tests 7. Part 2:Regression Models
8. Chapter 6: Simple Linear Regression 9. Chapter 7: Multiple Linear Regression 10. Part 3:Classification Models
11. Chapter 8: Discrete Models 12. Chapter 9: Discriminant Analysis 13. Part 4:Time Series Models
14. Chapter 10: Introduction to Time Series 15. Chapter 11: ARIMA Models 16. Chapter 12: Multivariate Time Series 17. Part 5:Survival Analysis
18. Chapter 13: Time-to-Event Variables – An Introduction 19. Chapter 14: Survival Models 20. Index 21. Other Books You May Enjoy

Chi-square goodness-of-fit test power analysis

Let’s use an example where a phone vendor sells four popular models of phones, models A, B, C, and D. We want to determine how many samples are required to produce a power of 0.8 so we can understand whether there is a statistically significant difference between the popularity of different phones so the vendor can more properly invest in phone acquisitions. In this case, the null hypothesis asserts that 25% of phones from each model were sold. In reality, 20% of phones sold were model A, 30% were model B, 19% were model C, and 31% were model D phones.

Testing different values for the nobs argument (number of observations), we find that a minimum of 224 samples produces a power just greater than 0.801. Adding more samples will only improve this. If the true distribution were more divergent from the hypothesized 25% even split, fewer samples would be required. However, since the splits are relatively close to 25%, a high volume...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image