Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python A practical guide to probabilistic modeling

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805127161
Length 394 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface
1. Chapter 1 Thinking Probabilistically FREE CHAPTER 2. Chapter 2 Programming Probabilistically 3. Chapter 3 Hierarchical Models 4. Chapter 4 Modeling with Lines 5. Chapter 5 Comparing Models 6. Chapter 6 Modeling with Bambi 7. Chapter 7 Mixture Models 8. Chapter 8 Gaussian Processes 9. Chapter 9 Bayesian Additive Regression Trees 10. Chapter 10 Inference Engines 11. Chapter 11 Where to Go Next 12. Bibliography
13. Other Books You May Enjoy
14. Index

2.7 InferenceData

InferenceData is a rich container for the results of Bayesian inference. A modern Bayesian analysis potentially generates many sets of data including posterior samples and posterior predictive samples. But we also have observed data, samples from the prior, and even statistics generated by the sampler. All this data, and more, can be stored in an InferenceData object. To help keep all this information organized, each one of these sets of data has its own group. For instance, the posterior samples are stored in the posterior group. The observed data is stored in the observed_data group.

Figure 2.18 shows an HTML representation of the InferenceData for model_g. We can see 4 groups: posterior, posterior_predictive, sample_stats, and observed_data. All of them are collapsed except for the posterior group. We can see we have two coordinates chain and draw of dimensions 4 and 1000 respectively. We also have 2 variables μ and σ.

PIC

Figure 2.18: InferenceData...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image