Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon

TensorFlow 1.13.0-rc2 releases!

Save for later
  • 2 min read
  • 25 Feb 2019

article-image

After the TensorFlow 1.13.0-rc0 release last month, the TensorFlow team is out with another update 1.13.0-rc2, unveiling major features and updates. The new release explores minor bug fixes, improvements, and other changes.

Let’s have a look at the noteworthy features in TensorFlow 1.13.0-rc2.

Major Improvements

  • TensorFlow Lite has moved from contrib to core.
  • TensorFlow GPU binaries are built against CUDA 10 and TensorRT 5.0.
  • There’s newly added support for Python3.7 on all operating systems.
  • NCCL has been moved to core.

Behavioral and other changes

  • Conversion of python floating types to uint32/64 in tf.constant is not allowed.
  • The gain argument of convolutional orthogonal initializers has consistent behavior with the tf.initializers.orthogonal initializer.
  • Subclassed Keras models can be saved via tf.contrib.saved_model.save_keras_model.
  • LinearOperator.matmul now returns a new LinearOperator.
  • Performance of GPU cumsum/cumprod has improved by up to 300x.
  • Support has been added for weight decay in most TPU embedding optimizers, including AdamW and MomentumW.
  • Tensorflow/contrib/lite has been moved to tensorflow/lite.
  • An experimental Java API is added to inject TensorFlow Lite delegates.
  • Unlock access to the largest independent learning library in Tech for FREE!
    Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
    Renews at £16.99/month. Cancel anytime
  • Support has been added for strings in TensorFlow Lite Java API.
  • All the occurences of tf.contrib.estimator.DNNLinearCombinedEstimator has been replaced with tf.estimator.DNNLinearCombinedEstimator.
  • Regression_head has been updated to the new Head API for Canned Estimator V2.
  • XLA HLO graphs can be rendered as SVG/HTML.

Bug Fixes

  • Documentation has been updated with the details regarding the rounding mode used in quantize_and_dequantize_v2.
  • OpenSSL compatibility has been fixed by avoiding EVP_MD_CTX_destroy.
  • CUDA dependency has been upgraded to 10.0.
  • All occurences of tf.contrib.estimator.InMemoryEvaluatorHook and tf.contrib.estimator.make_stop_at_checkpoint_step_hook have been replaced with tf.estimator.experimental.InMemoryEvaluatorHook and tf.estimator.experimental.make_stop_at_checkpoint_step_hook.
  • tf.data.Dataset.make_one_shot_iterator() has been deprecated in V1, removed from V2, and tf.compat.v1.data.make_one_shot_iterator() has instead been added.
  • keep_prob is deprecated and Dropout now takes rate argument.
  • NUMA-aware MapAndBatch dataset has been added.
  • Apache Ignite Filesystem plugin has been added to support accessing Apache IGFS.


For more information, check out the official TensorFlow 1.13.0-rc2 release notes

TensorFlow 2.0 to be released soon with eager execution, removal of redundant APIs, tf function and more

Building your own Snapchat-like AR filter on Android using TensorFlow Lite [ Tutorial ]

TensorFlow 1.11.0 releases