Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The DevOps 2.3 Toolkit

You're reading from   The DevOps 2.3 Toolkit Kubernetes: Deploying and managing highly-available and fault-tolerant applications at scale

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789135503
Length 418 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Viktor Farcic Viktor Farcic
Author Profile Icon Viktor Farcic
Viktor Farcic
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. How Did We Get Here? FREE CHAPTER 2. Running Kubernetes Cluster Locally 3. Creating Pods 4. Scaling Pods With ReplicaSets 5. Using Services to Enable Communication between Pods 6. Deploying Releases with Zero-Downtime 7. Using Ingress to Forward Traffic 8. Using Volumes to Access Host's File System 9. Using ConfigMaps to Inject Configuration Files 10. Using Secrets to Hide Confidential Information 11. Dividing a Cluster into Namespaces 12. Securing Kubernetes Clusters 13. Managing Resources 14. Creating a Production-Ready Kubernetes Cluster 15. Persisting State 16. The End 17. Other Books You May Enjoy

Measuring actual memory and CPU consumption

How did we come up with the current memory and CPU values? Why did we set the memory of the MongoDB to 100Mi? Why not 50Mi or 1Gi? It is embarrassing to admit that the values we have right now are random. I guessed that the containers based on the vfarcic/go-demo-2 image require less resources than Mongo database, so their values are comparatively smaller. That was the only criteria I used to define the resources.

Before you frown upon my decision to put random values for resources, you should know that we do not have any metrics to back us up. Anybody's guess is as good as mine.

The only way to truly know how much memory and CPU an application uses is by retrieving metrics. We'll use Heapster (https://github.com/kubernetes/heapster) for that purpose.

Heapster collects and interprets various signals like compute resource usage...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image