Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 2.0 Computer Vision Cookbook

You're reading from   TensorFlow 2.0 Computer Vision Cookbook Implement machine learning solutions to overcome various computer vision challenges

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781838829131
Length 542 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jesús Martínez Jesús Martínez
Author Profile Icon Jesús Martínez
Jesús Martínez
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: Getting Started with TensorFlow 2.x for Computer Vision 2. Chapter 2: Performing Image Classification FREE CHAPTER 3. Chapter 3: Harnessing the Power of Pre-Trained Networks with Transfer Learning 4. Chapter 4: Enhancing and Styling Images with DeepDream, Neural Style Transfer, and Image Super-Resolution 5. Chapter 5: Reducing Noise with Autoencoders 6. Chapter 6: Generative Models and Adversarial Attacks 7. Chapter 7: Captioning Images with CNNs and RNNs 8. Chapter 8: Fine-Grained Understanding of Images through Segmentation 9. Chapter 9: Localizing Elements in Images with Object Detection 10. Chapter 10: Applying the Power of Deep Learning to Videos 11. Chapter 11: Streamlining Network Implementation with AutoML 12. Chapter 12: Boosting Performance 13. Other Books You May Enjoy

Using data augmentation to improve performance with the tf.data and tf.image APIs

Data augmentation is a powerful technique we can apply to artificially increment the size of our dataset, by creating slightly modified copies of the images at our disposal. In this recipe, we'll leverage the tf.data and tf.image APIs to increase the performance of a CNN trained on the challenging Caltech 101 dataset.

Getting ready

We must install tensorflow_docs:

$> pip install git+https://github.com/tensorflow/docs

In this recipe, we'll use the Caltech 101 dataset, which is available here: http://www.vision.caltech.edu/Image_Datasets/Caltech101/. Download and decompress 101_ObjectCategories.tar.gz to your preferred location. From now on, we assume the data is inside the ~/.keras/datasets directory, in a folder named 101_ObjectCategories.

Here are some sample images from Caltech 101:

Figure 2.11 – Caltech 101 sample images

Figure 2.11 – Caltech 101 sample images

Let's go to the next section.

How to do it…

Let's go over the steps required to complete this recipe.

  1. Import the necessary dependencies:
    import os
    import pathlib
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    import tensorflow_docs as tfdocs
    import tensorflow_docs.plots
    from glob import glob
    from sklearn.model_selection import train_test_split
    from tensorflow.keras.layers import *
    from tensorflow.keras.models import Model
  2. Create an alias for the tf.data.experimental.AUTOTUNE flag, which we'll use later on:
    AUTOTUNE = tf.data.experimental.AUTOTUNE
  3. Define a function to create a smaller version of VGG. Start by creating the input layer and the first block of two convolutions with 32 filters each:
    def build_network(width, height, depth, classes):
        input_layer = Input(shape=(width, height, depth))
        x = Conv2D(filters=32,
                   kernel_size=(3, 3),
                   padding='same')(input_layer)
        x = ReLU()(x)
        x = BatchNormalization(axis=-1)(x)
        x = Conv2D(filters=32,
                   kernel_size=(3, 3),
                   padding='same')(x)
        x = ReLU()(x)
        x = BatchNormalization(axis=-1)(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)
        x = Dropout(rate=0.25)(x)
  4. Continue with the second block of two convolutions, this time each with 64 kernels:
        x = Conv2D(filters=64,
                   kernel_size=(3, 3),
                   padding='same')(x)
        x = ReLU()(x)
        x = BatchNormalization(axis=-1)(x)
        x = Conv2D(filters=64,
                   kernel_size=(3, 3),
                   padding='same')(x)
        x = ReLU()(x)
        x = BatchNormalization(axis=-1)(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)
        x = Dropout(rate=0.25)(x)
  5. Define the last part of the architecture, which consists of a series of fully connected layers:
        x = Flatten()(x)
        x = Dense(units=512)(x)
        x = ReLU()(x)
        x = BatchNormalization(axis=-1)(x)
        x = Dropout(rate=0.5)(x)
        x = Dense(units=classes)(x)
        output = Softmax()(x)
        return Model(input_layer, output)
  6. Define a function to plot and save the training curves of a model, given its training history:
    def plot_model_history(model_history, metric, 
                           plot_name):
        plt.style.use('seaborn-darkgrid')
        plotter = tfdocs.plots.HistoryPlotter()
        plotter.plot({'Model': model_history}, 
                      metric=metric)
        plt.title(f'{metric.upper()}')
        plt.ylim([0, 1])
        plt.savefig(f'{plot_name}.png')
        plt.close()
  7. Define a function to load an image and one-hot encode its label, based on the image's file path:
    def load_image_and_label(image_path, target_size=(64, 
                                                     64)):
        image = tf.io.read_file(image_path)
        image = tf.image.decode_jpeg(image, channels=3)
        image = tf.image.convert_image_dtype(image, 
                                             np.float32)
        image = tf.image.resize(image, target_size)
        label = tf.strings.split(image_path, os.path.sep)[-2]
        label = (label == CLASSES)  # One-hot encode.
        label = tf.dtypes.cast(label, tf.float32)
        return image, label
  8. Define a function to augment an image by performing random transformations on it:
    def augment(image, label):
        image = tf.image.resize_with_crop_or_pad(image, 
                                                 74, 74)
        image = tf.image.random_crop(image, size=(64, 64, 3))
        image = tf.image.random_flip_left_right(image)
        image = tf.image.random_brightness(image, 0.2)
        return image, label
  9. Define a function to prepare a tf.data.Dataset of images, based on a glob-like pattern that refers to the folder where they live:
    def prepare_dataset(data_pattern):
        return (tf.data.Dataset
                .from_tensor_slices(data_pattern)
                .map(load_image_and_label,
                     num_parallel_calls=AUTOTUNE))
  10. Set the random seed:
    SEED = 999
    np.random.seed(SEED)
  11. Load the paths to all images in the dataset, excepting the ones of the BACKGROUND_Google class:
    base_path = (pathlib.Path.home() / '.keras' / 
                 'datasets' /
                 '101_ObjectCategories')
    images_pattern = str(base_path / '*' / '*.jpg')
    image_paths = [*glob(images_pattern)]
    image_paths = [p for p in image_paths if
                   p.split(os.path.sep)[-2] !=
                  'BACKGROUND_Google']
  12. Compute the unique categories in the dataset:
    CLASSES = np.unique([p.split(os.path.sep)[-2]
                         for p in image_paths])
  13. Split the image paths into training and testing subsets:
    train_paths, test_paths = train_test_split(image_paths,
                                              test_size=0.2,
                                          random_state=SEED)
  14. Prepare the training and testing datasets, without augmentation:
    BATCH_SIZE = 64
    BUFFER_SIZE = 1024
    train_dataset = (prepare_dataset(train_paths)
                     .batch(BATCH_SIZE)
                     .shuffle(buffer_size=BUFFER_SIZE)
                     .prefetch(buffer_size=BUFFER_SIZE))
    test_dataset = (prepare_dataset(test_paths)
                    .batch(BATCH_SIZE)
                    .prefetch(buffer_size=BUFFER_SIZE))
  15. Instantiate, compile, train and evaluate the network:
    EPOCHS = 40
    model = build_network(64, 64, 3, len(CLASSES))
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    history = model.fit(train_dataset,
                        validation_data=test_dataset,
                        epochs=EPOCHS)
    result = model.evaluate(test_dataset)
    print(f'Test accuracy: {result[1]}')
    plot_model_history(history, 'accuracy', 'normal')

    The accuracy on the test set is:

    Test accuracy: 0.6532258

    And here's the accuracy curve:

    Figure 2.12 – Training and validation accuracy for a network without data augmentation

    Figure 2.12 – Training and validation accuracy for a network without data augmentation

  16. Prepare the training and testing sets, this time applying data augmentation to the training set:
    train_dataset = (prepare_dataset(train_paths)
                     .map(augment, 
                         num_parallel_calls=AUTOTUNE)
                     .batch(BATCH_SIZE)
                     .shuffle(buffer_size=BUFFER_SIZE)
                     .prefetch(buffer_size=BUFFER_SIZE))
    test_dataset = (prepare_dataset(test_paths)
                    .batch(BATCH_SIZE)
                    .prefetch(buffer_size=BUFFER_SIZE))
  17. Instantiate, compile, train, and evaluate the network on the augmented data:
    model = build_network(64, 64, 3, len(CLASSES))
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    history = model.fit(train_dataset,
                        validation_data=test_dataset,
                        epochs=EPOCHS)
    result = model.evaluate(test_dataset)
    print(f'Test accuracy: {result[1]}')
    plot_model_history(history, 'accuracy', 'augmented')

    The accuracy on the test set when we use data augmentation is as follows:

    Test accuracy: 0.74711984

    And the accuracy curve looks like this:

Figure 2.13 – Training and validation accuracy for a network with data augmentation

Figure 2.13 – Training and validation accuracy for a network with data augmentation

Let's understand what we just did in the next section.

How it works…

We just implemented a trimmed down version of the famous VGG architecture, trained on the Caltech 101 dataset. To better understand the advantages of data augmentation, we fitted a first version on the original data, without any modification, obtaining an accuracy level of 65.32% on the test set. This first model displays signs of overfitting, because the gap that separates the training and validation accuracy curves widens early in the training process.

Next, we trained the same network on an augmented dataset (see Step 15), using the augment() function defined earlier. This greatly improved the model's performance, reaching a respectable accuracy of 74.19% on the test set. Also, the gap between the training and validation accuracy curves is noticeably smaller, which suggests a regularization effect coming out from the application of data augmentation.

See also

You can learn more about Caltech 101 here: http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

You have been reading a chapter from
TensorFlow 2.0 Computer Vision Cookbook
Published in: Feb 2021
Publisher: Packt
ISBN-13: 9781838829131
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image