In this section, we will analyze the performance of logistic regression on various examples of text2vec.
Application using text2vec examples
How to do it...
Here is how we apply text2vec:
- Load the required packages and dataset:
library(text2vec) library(glmnet) data("movie_review")
- Function to perform Lasso logistic regression, and return the train and test AUC values:
logistic_model <- function(Xtrain,Ytrain,Xtest,Ytest)
{ classifier <- cv.glmnet(x=Xtrain, y=Ytrain, family="binomial", alpha=1, type.measure = "auc", nfolds = 5, maxit = 1000) plot(classifier) vocab_test_pred <- predict(classifier, Xtest, type = "response") return(cat("Train AUC ...