Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning, Second Edition

You're reading from   Python Machine Learning, Second Edition Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787125933
Length 622 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data FREE CHAPTER 2. Training Simple Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using scikit-learn 4. Building Good Training Sets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Implementing a Multilayer Artificial Neural Network from Scratch 13. Parallelizing Neural Network Training with TensorFlow 14. Going Deeper – The Mechanics of TensorFlow 15. Classifying Images with Deep Convolutional Neural Networks 16. Modeling Sequential Data Using Recurrent Neural Networks Index

Dealing with nonlinear relationships using random forests

In this section, we are going to take a look at random forest regression, which is conceptually different from the previous regression models in this chapter. A random forest, which is an ensemble of multiple decision trees, can be understood as the sum of piecewise linear functions in contrast to the global linear and polynomial regression models that we discussed previously. In other words, via the decision tree algorithm, we are subdividing the input space into smaller regions that become more manageable.

Decision tree regression

An advantage of the decision tree algorithm is that it does not require any transformation of the features if we are dealing with nonlinear data. We remember from Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, that we grow a decision tree by iteratively splitting its nodes until the leaves are pure or a stopping criterion is satisfied. When we used decision trees for classification...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime