Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Feature Engineering Cookbook

You're reading from   Python Feature Engineering Cookbook Over 70 recipes for creating, engineering, and transforming features to build machine learning models

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781789806311
Length 372 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Soledad Galli Soledad Galli
Author Profile Icon Soledad Galli
Soledad Galli
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Foreseeing Variable Problems When Building ML Models 2. Imputing Missing Data FREE CHAPTER 3. Encoding Categorical Variables 4. Transforming Numerical Variables 5. Performing Variable Discretization 6. Working with Outliers 7. Deriving Features from Dates and Time Variables 8. Performing Feature Scaling 9. Applying Mathematical Computations to Features 10. Creating Features with Transactional and Time Series Data 11. Extracting Features from Text Variables 12. Other Books You May Enjoy

Dividing the variable into intervals of equal width

In equal-width discretization, the variable values are sorted into intervals of the same width. The number of intervals is decided arbitrarily and the width is determined by the range of values of the variable and the number of bins to create, so for the variable X, the interval width is given as follows: 

 

For example, if the values of the variable vary between 0 and 100, we can create five bins like this: width = (100-0) / 5 = 20; the bins will be 0-20, 20-40, 40-60, 80-100. The first and final bins (0-20 and 80-100) can be expanded to accommodate outliers, that is, values under 0 or greater than 100 would be placed in those bins as well, by extending the limits to minus and plus infinity.

In this recipe, we will carry out equal-width discretization using pandas, scikit-learn, and Feature-engine.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image