Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Understand how deep neural networks work and apply them to real-world tasks

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781837638505
Length 362 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1:Introduction to Neural Networks
2. Chapter 1: Machine Learning – an Introduction FREE CHAPTER 3. Chapter 2: Neural Networks 4. Chapter 3: Deep Learning Fundamentals 5. Part 2: Deep Neural Networks for Computer Vision
6. Chapter 4: Computer Vision with Convolutional Networks 7. Chapter 5: Advanced Computer Vision Applications 8. Part 3: Natural Language Processing and Transformers
9. Chapter 6: Natural Language Processing and Recurrent Neural Networks 10. Chapter 7: The Attention Mechanism and Transformers 11. Chapter 8: Exploring Large Language Models in Depth 12. Chapter 9: Advanced Applications of Large Language Models 13. Part 4: Developing and Deploying Deep Neural Networks
14. Chapter 10: Machine Learning Operations (MLOps) 15. Index 16. Other Books You May Enjoy

Training NNs

The NN function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow></mml:mfenced></mml:math> approximates the function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>g</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow></mml:mfenced></mml:math>: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow></mml:mfenced><mml:mo>≈</mml:mo><mml:mi>g</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow></mml:mfenced></mml:math>. The goal of the training is to find parameters, θ, such that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow></mml:mfenced></mml:math> will best approximate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>g</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow></mml:mfenced></mml:math>. First, we’ll see how to do that for a
single-layer network, using an optimization algorithm called GD. Then, we’ll extend it to a deep feedforward network with the help of BP.

Note

We should note that an NN and its training algorithm are two separate things. This means we can adjust the weights of a network in some way other than GD and BP, but this is the most popular and efficient way to do so and is, ostensibly, the only way that is currently used in practice.

GD

For the purposes of this section, we’ll train a simple NN using the mean square error (MSE) cost function. It measures the difference (known as error) between the network output and the training data labels of all training samples:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" display="block"><mml:mi>J</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:mfrac><mml:mrow><mml:munderover><mml:mo stretchy="false">∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:munderover><mml:mrow><mml:msup><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mfenced separators="|"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:msup></mml:mrow></mml:mfenced><mml:mo>-</mml:mo><mml:msup><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:msup></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math>

At first, this might look scary, but fear not! Behind the scenes, it’s very simple and straightforward...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image