Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Learn how to apply powerful data analysis techniques with popular open source Python modules

Arrow left icon
Product type Paperback
Published in Oct 2014
Publisher
ISBN-13 9781783553358
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. Statistics and Linear Algebra 4. pandas Primer 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources
Index

Logarithmic plots


Logarithmic plots (or log plots) are plots that use a logarithmic scale. A logarithmic scale shows the value of a variable which uses intervals that match orders of magnitude, instead of a regular linear scale. There are two types of logarithmic plots. The log-log plot employs logarithmic scaling on both axes and is represented in matplotlib by the matplotlib.pyplot.loglog() function. The semi-log plots use linear scaling on one axis and logarithmic scaling on the other axis. These plots are represented in the matplotlib API by the semilogx() and semilogy() functions. On log-log plots, power laws appear as straight lines. On semi-log plots, straight lines represent exponential laws.

Moore's law is such a law. It's not a physical, but more of an empirical observation. Gordon Moore discovered a trend of the number of transistors in integrated circuits doubling every two years. On http://en.wikipedia.org/wiki/Transistor_count#Microprocessors, a table can be found with transistor...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime