Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Machine Learning Cookbook

You're reading from   Practical Machine Learning Cookbook Supervised and unsupervised machine learning simplified

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781785280511
Length 570 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Atul Tripathi Atul Tripathi
Author Profile Icon Atul Tripathi
Atul Tripathi
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Machine Learning FREE CHAPTER 2. Classification 3. Clustering 4. Model Selection and Regularization 5. Nonlinearity 6. Supervised Learning 7. Unsupervised Learning 8. Reinforcement Learning 9. Structured Prediction 10. Neural Networks 11. Deep Learning 12. Case Study - Exploring World Bank Data 13. Case Study - Pricing Reinsurance Contracts 14. Case Study - Forecast of Electricity Consumption

Introduction

The Markov chain: A sequence  of trials of an experiment is a Markov chain if the outcome of each experiment is one of the set of discrete states, and the outcome of the experiment is dependent only on the present state and not of any of the past states. The probability of changing from one state to another state is represented asIntroduction. It is called a transition probability. The transition probability matrix is an n × n matrix such that each element of the matrix is non-negative and each row of the matrix sums to one.

Continuous time Markov chains: Continuous-time Markov chains can be labeled as transition systems augmented with rates that have discrete states. The states have continuous time-steps and the delays are exponentially distributed. Continuous-time Markov chains are suited to model reliability models, control systems, biological pathways, chemical reactions, and so on.

Monte Carlo simulations: Monte Carlo simulation  is a stochastic simulation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime