Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Convolutional Neural Networks

You're reading from   Practical Convolutional Neural Networks Implement advanced deep learning models using Python

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788392303
Length 218 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Mohit Sewak Mohit Sewak
Author Profile Icon Mohit Sewak
Mohit Sewak
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Pradeep Pujari Pradeep Pujari
Author Profile Icon Pradeep Pujari
Pradeep Pujari
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Deep Neural Networks – Overview 2. Introduction to Convolutional Neural Networks FREE CHAPTER 3. Build Your First CNN and Performance Optimization 4. Popular CNN Model Architectures 5. Transfer Learning 6. Autoencoders for CNN 7. Object Detection and Instance Segmentation with CNN 8. GAN: Generating New Images with CNN 9. Attention Mechanism for CNN and Visual Models 10. Other Books You May Enjoy

Using attention to improve visual models


As we discovered in the NLP example covered in the earlier section on Attention Mechanism - Intuition, Attention did help us a lot in both achieving new use-cases, not optimally feasible with conventional NLP, and vastly improving the performance of the existing NLP mechanism. Similar is the usage of Attention in CNN and Visual Models as well

In the earlier chapter Chapter 7, Object-Detection & Instance-Segmentation with CNN, we discovered how Attention (like) mechanism are used as Region Proposal Networks for networks like Faster R-CNN and Mask R-CNN, to greatly enhance and optimize the proposed regions, and enable the generation of segment masks. This corresponds to the first part of the discussion. In this section, we will cover the second part of the discussion, where we will use 'Attention' mechanism to improve the performance of our CNNs, even under extreme conditions.

Reasons for sub-optimal performance of visual CNN models

The performance...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime