Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
PHP 7 Data Structures and Algorithms

You're reading from   PHP 7 Data Structures and Algorithms Implement linked lists, stacks, and queues using PHP

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781786463890
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Mizanur Rahman Mizanur Rahman
Author Profile Icon Mizanur Rahman
Mizanur Rahman
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Data Structures and Algorithms FREE CHAPTER 2. Understanding PHP Arrays 3. Using Linked Lists 4. Constructing Stacks and Queues 5. Applying Recursive Algorithms - Recursion 6. Understanding and Implementing Trees 7. Using Sorting Algorithms 8. Exploring Search Options 9. Putting Graphs into Action 10. Understanding and Using Heaps 11. Solving Problems with Advanced Techniques 12. PHP Built-In Support for Data Structures and Algorithms 13. Functional Data Structures with PHP

Using heaps as a priority queue

 

One of the main ways to use the heap data structure is to create a priority queue. As we have seen in Chapter 4, Constructing Stacks and Queues, priority queues are special queues where the FIFO behavior depends on the priority of the element rather than the way items are added to the queue. We have already seen the implementation using Linked list and SPL. Now we are going to explore the priority queue implementation using heap and especially max-heap.

 

Now we are going to implement the priority queue using MaxHeap. Here, the maximum priority item is removed from the queue first. Our implementation will be similar to our last implementation of MinHeap with a little difference. Instead of starting the root at 1, we want to start it from 0. So, the calculation of the left and right child changes as well. This will help us to understand...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image