Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV 4 Computer Vision Application Programming Cookbook

You're reading from   OpenCV 4 Computer Vision Application Programming Cookbook Build complex computer vision applications with OpenCV and C++

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789340723
Length 494 pages
Edition 4th Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Robert Laganiere Robert Laganiere
Author Profile Icon Robert Laganiere
Robert Laganiere
David Millán Escrivá David Millán Escrivá
Author Profile Icon David Millán Escrivá
David Millán Escrivá
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Playing with Images FREE CHAPTER 2. Manipulating the Pixels 3. Processing Color Images with Classes 4. Counting the Pixels with Histograms 5. Transforming Images with Morphological Operations 6. Filtering the Images 7. Extracting Lines, Contours, and Components 8. Detecting Interest Points 9. Describing and Matching Interest Points 10. Estimating Projective Relations in Images 11. Reconstructing 3D Scenes 12. Processing Video Sequences 13. Tracking Visual Motion 14. Learning from Examples 15. OpenCV Advanced Features 16. Other Books You May Enjoy

Describing and Matching Interest Points

In Chapter 8, Detecting Interest Points, we learned how to detect special points in an image with the objective of subsequently performing a local image analysis. These keypoints are chosen to be distinctive enough so that if a keypoint is detected on the image of an object, then the same point is expected to be detected in other images depicting the same object. We also described some more sophisticated interest point detectors that can assign a representative scale factor and/or an orientation to a keypoint. As we will see in this recipe, this additional information can be useful to normalize scene representations with respect to viewpoint variations.

In order to perform image analysis based on interest points, we now need to build rich representations that uniquely describe each of these keypoints. This chapter looks at the different...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime