Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Modern Data Architectures with Python

You're reading from   Modern Data Architectures with Python A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781801070492
Length 318 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Brian Lipp Brian Lipp
Author Profile Icon Brian Lipp
Brian Lipp
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1:Fundamental Data Knowledge
2. Chapter 1: Modern Data Processing Architecture FREE CHAPTER 3. Chapter 2: Understanding Data Analytics 4. Part 2: Data Engineering Toolset
5. Chapter 3: Apache Spark Deep Dive 6. Chapter 4: Batch and Stream Data Processing Using PySpark 7. Chapter 5: Streaming Data with Kafka 8. Part 3:Modernizing the Data Platform
9. Chapter 6: MLOps 10. Chapter 7: Data and Information Visualization 11. Chapter 8: Integrating Continous Integration into Your Workflow 12. Chapter 9: Orchestrating Your Data Workflows 13. Part 4:Hands-on Project
14. Chapter 10: Data Governance 15. Chapter 11: Building out the Groundwork 16. Chapter 12: Completing Our Project 17. Index 18. Other Books You May Enjoy

Batch processing

Batch-processing data is the most common form of data processing, and for most companies, it is their bread-and-butter approach to data. Batch processing is the method of data processing that is done at a “triggered” pace. This trigger may be manual or based on a schedule. Streaming, on the other hand, involves attempting to trigger something very quickly. This is also known as micro-batch processing. Streaming can exist in different ways on different systems. In Spark, streaming is designed to look and work like batch processing but without the need to constantly trigger the job.

In this section, we will set up some fake data for our examples using the Faker Python library. Faker will only be used for example purposes since it’s very important to the learning process. If you prefer an alternative way to generate data, please feel free to use that instead:

from faker import Faker
import pandas as pd
import random
fake = Faker()
def generate_data...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image