Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Transformers

You're reading from   Mastering Transformers Build state-of-the-art models from scratch with advanced natural language processing techniques

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801077651
Length 374 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Savaş Yıldırım Savaş Yıldırım
Author Profile Icon Savaş Yıldırım
Savaş Yıldırım
Meysam Asgari- Chenaghlu Meysam Asgari- Chenaghlu
Author Profile Icon Meysam Asgari- Chenaghlu
Meysam Asgari- Chenaghlu
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Introduction – Recent Developments in the Field, Installations, and Hello World Applications
2. Chapter 1: From Bag-of-Words to the Transformer FREE CHAPTER 3. Chapter 2: A Hands-On Introduction to the Subject 4. Section 2: Transformer Models – From Autoencoding to Autoregressive Models
5. Chapter 3: Autoencoding Language Models 6. Chapter 4:Autoregressive and Other Language Models 7. Chapter 5: Fine-Tuning Language Models for Text Classification 8. Chapter 6: Fine-Tuning Language Models for Token Classification 9. Chapter 7: Text Representation 10. Section 3: Advanced Topics
11. Chapter 8: Working with Efficient Transformers 12. Chapter 9:Cross-Lingual and Multilingual Language Modeling 13. Chapter 10: Serving Transformer Models 14. Chapter 11: Attention Visualization and Experiment Tracking 15. Other Books You May Enjoy

Introduction to efficient, light, and fast transformers

Transformer-based models have distinctly achieved state-of-the-art results in many NLP problems at the cost of quadratic memory and computational complexity. We can highlight the issues regarding complexity as follows:

  • The models are not able to efficiently process long sequences due to their self-attention mechanism, which scales quadratically with the sequence length.
  • An experimental setup using a typical GPU with 16 GB can handle the sentences of 512 tokens for training and inference. However, longer entries can cause problems.
  • The NLP models keep growing from the 110 million parameters of BERT-base to the 17 billion parameters of Turing-NLG and to the 175 billion parameters of GPT-3. This notion raises concerns about computational and memory complexity.
  • We also need to care about costs, production, reproducibility, and sustainability. Hence, we need faster and lighter transformers, especially on edge...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime