Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering ROS for Robotics Programming

You're reading from   Mastering ROS for Robotics Programming Design, build, and simulate complex robots using the Robot Operating System

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788478953
Length 580 pages
Edition 2nd Edition
Languages
Tools
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Lentin Joseph Lentin Joseph
Author Profile Icon Lentin Joseph
Lentin Joseph
Jonathan Cacace Jonathan Cacace
Author Profile Icon Jonathan Cacace
Jonathan Cacace
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Introduction to ROS FREE CHAPTER 2. Getting Started with ROS Programming 3. Working with 3D Robot Modeling in ROS 4. Simulating Robots Using ROS and Gazebo 5. Simulating Robots Using ROS and V-REP 6. Using the ROS MoveIt! and Navigation Stack 7. Working with pluginlib, Nodelets, and Gazebo Plugins 8. Writing ROS Controllers and Visualization Plugins 9. Interfacing I/O Boards, Sensors, and Actuators to ROS 10. Programming Vision Sensors Using ROS, Open CV, and PCL 11. Building and Interfacing Differential Drive Mobile Robot Hardware in ROS 12. Exploring the Advanced Capabilities of ROS-MoveIt! 13. Using ROS in MATLAB and Simulink 14. ROS for Industrial Robots 15. Troubleshooting and Best Practices in ROS 16. Other Books You May Enjoy

Creating our first URDF model


After learning about URDF and its important tags, we can start some basic modeling using URDF. The first robot mechanism that we are going to design is a pan-and-tilt mechanism, as shown in the following figure.

There are three links and two joints in this mechanism. The base link is static, and all the other links are mounted on it. The first joint can pan on its axis, and the second link is mounted on the first link, and it can tilt on its axis. The two joints in this system are of a revolute type:

Figure 4: Visualization of a pan-and-tilt mechanism in RViz

Let's see the URDF code of this mechanism. Navigate to the mastering_ros_robot_description_pkg/urdf directory and open pan_tilt.urdf:

<?xml version="1.0"?> 
<robot name="pan_tilt"> 
  <link name="base_link"> 
    <visual> 
      <geometry> 
      <cylinder length="0.01" radius="0.2"/> 
      </geometry> 
      <origin rpy="0 0 0" xyz="0 0 0"/> 
      <material...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime