Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering R for Quantitative Finance

You're reading from   Mastering R for Quantitative Finance Use R to optimize your trading strategy and build up your own risk management system

Arrow left icon
Product type Paperback
Published in Mar 2015
Publisher
ISBN-13 9781783552078
Length 362 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (15) Chapters Close

Preface 1. Time Series Analysis 2. Factor Models FREE CHAPTER 3. Forecasting Volume 4. Big Data – Advanced Analytics 5. FX Derivatives 6. Interest Rate Derivatives and Models 7. Exotic Options 8. Optimal Hedging 9. Fundamental Analysis 10. Technical Analysis, Neural Networks, and Logoptimal Portfolios 11. Asset and Liability Management 12. Capital Adequacy 13. Systemic Risks Index

The volume forecasting model

This section explains the intra-day volume forecasting model proposed by Bialkowski, J., Darolles, S., and Le Fol, G. (2008).

They use CAC40 data to test their model, including the turnover of every stock in the index as of September 2004. Trades are aggregated into 20-minute time slots, resulting in 25 observations each day.

Turnover is decomposed into two additive components. The first one is the seasonal component (the U shape) that represents the expected level of turnover on an average day for each stock. Given that every day is a little different from the average, there is a second one, the dynamic component, which shows the expected deviation from the average on a specific day.

The decomposition is carried out using the factor model of Bai, J. (2003). The initial problem is as follows:

The volume forecasting model

Here, the X (TxN)-sized matrix contains the initial data, F (Txr) is the factor matrix, Λ' (Nxr) is the matrix of factor loadings, and e (TxN) is the error term...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime