In this section, we will look into how to implement text classification using the Spark ML and Naive Bayes algorithms. The classification of text is one of NLP's most common cases of use. Text classification can be used to detect email spam, identify retail product hierarchy, and analyze feelings. This process is typically a problem of classification in which we try to identify a specific subject from a natural language source with a large volume of data. We can discuss several topics within each of the data groups and it is therefore important to classify the article or textual information in logical groups. The techniques of text classification help us to do this. These techniques require a lot of computing power if the data volume is large and a distributed computing framework for text classification is recommended. For example...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine