Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Azure Machine Learning

You're reading from   Mastering Azure Machine Learning Perform large-scale end-to-end advanced machine learning in the cloud with Microsoft Azure Machine Learning

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781789807554
Length 436 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Christoph Körner Christoph Körner
Author Profile Icon Christoph Körner
Christoph Körner
Kaijisse Waaijer Kaijisse Waaijer
Author Profile Icon Kaijisse Waaijer
Kaijisse Waaijer
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface Section 1: Azure Machine Learning
1. Building an end-to-end machine learning pipeline in Azure FREE CHAPTER 2. Choosing a machine learning service in Azure Section 2: Experimentation and Data Preparation
3. Data experimentation and visualization using Azure 4. ETL, data preparation, and feature extraction 5. Azure Machine Learning pipelines 6. Advanced feature extraction with NLP Section 3: Training Machine Learning Models
7. Building ML models using Azure Machine Learning 8. Training deep neural networks on Azure 9. Hyperparameter tuning and Automated Machine Learning 10. Distributed machine learning on Azure 11. Building a recommendation engine in Azure Section 4: Optimization and Deployment of Machine Learning Models
12. Deploying and operating machine learning models 13. MLOps—DevOps for machine learning 14. What's next? Index

Optimization techniques

If we have trained a simple ensemble model that performs reasonably better than the baseline model and achieves acceptable performance according to the expected performance estimated during data preparation, we can progress with optimization. This is a point we really want to emphasize. It's strongly discouraged to begin model optimization and stacking when a simple ensemble technique fails to deliver useful results. If this is the case, it would be much better to take a step back and dive deeper into data analysis and feature engineering.

Common ML optimization techniques, such as hyperparameter optimization, model stacking, and even automated machine learning, help you get the last 10% of performance boost out of your model while the remaining 90% is achieved by a single ensemble model. If you decide to use any of those optimization techniques, it is advised to perform them in parallel and fully automated on a distributed cluster.

After seeing too...

You have been reading a chapter from
Mastering Azure Machine Learning
Published in: Apr 2020
Publisher: Packt
ISBN-13: 9781789807554
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image