Data analysis, manual charting, thresholding, and alerting have been an inherent part of IT and security operations for decades. Until the advent of sophisticated machine learning algorithms and techniques, much of the burden of proactive insight, problem detection, and root cause analysis fell onto the shoulders of the analysts. As the complexity and scale of modern applications and infrastructure has grown exponentially, it is apparent that humans need help. Elastic machine learning (ML) is an effective, easy-to-use solution for anomaly detection and forecasting use cases in relation to time-series machine data. This definitive elastic ML guide will get the reader proficient in the operation and techniques of advanced analytics without the need to be well-versed in data science.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand