Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning: End-to-End guide for Java developers

You're reading from   Machine Learning: End-to-End guide for Java developers Data Analysis, Machine Learning, and Neural Networks simplified

Arrow left icon
Product type Course
Published in Oct 2017
Publisher Packt
ISBN-13 9781788622219
Length 1159 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Krishna Choppella Krishna Choppella
Author Profile Icon Krishna Choppella
Krishna Choppella
Uday Kamath Uday Kamath
Author Profile Icon Uday Kamath
Uday Kamath
Arrow right icon
View More author details
Toc

What this learning path covers

Module 1, Java for Data Science, investigates the support provided for low-level math operations and how they can be supported in a multiple processor environment. Data analysis, at its heart, necessitates the ability to manipulate and analyze large quantities of numeric data.

Module 2, Machine Learning in Java, reviews the various Java libraries and platforms dedicated to machine learning, what each library brings to the table, and what kind of problems it is able to solve. The review includes Weka, Java-ML, Apache Mahout, Apache Spark, deeplearning4j, and Mallet.

Module 3, Mastering Java Machine Learning, presents many advanced methods in clustering and outlier techniques, with applications. Topics covered are feature selection and reduction in unsupervised data, clustering algorithms, evaluation methods in clustering, and anomaly detection using statistical, distance, and distribution techniques. At the end of the chapter, we perform a case study for both clustering and outlier detection using a real-world image dataset, MNIST. We use the Smile API to do feature reduction and ELKI for learning.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image