Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning and Generative AI for Marketing

You're reading from   Machine Learning and Generative AI for Marketing Take your data-driven marketing strategies to the next level using Python

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781835889404
Length 482 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Nicholas C. Burtch Nicholas C. Burtch
Author Profile Icon Nicholas C. Burtch
Nicholas C. Burtch
Yoon Hyup Hwang Yoon Hyup Hwang
Author Profile Icon Yoon Hyup Hwang
Yoon Hyup Hwang
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. The Evolution of Marketing in the AI Era and Preparing Your Toolkit 2. Decoding Marketing Performance with KPIs FREE CHAPTER 3. Unveiling the Dynamics of Marketing Success 4. Harnessing Seasonality and Trends for Strategic Planning 5. Enhancing Customer Insight with Sentiment Analysis 6. Leveraging Predictive Analytics and A/B Testing for Customer Engagement 7. Personalized Product Recommendations 8. Segmenting Customers with Machine Learning 9. Creating Compelling Content with Zero-Shot Learning 10. Enhancing Brand Presence with Few-Shot Learning and Transfer Learning 11. Micro-Targeting with Retrieval-Augmented Generation 12. The Future Landscape of AI and ML in Marketing 13. Ethics and Governance in AI-Enabled Marketing 14. Other Books You May Enjoy
15. Index

Translating sentiment into actionable insights

So far in this chapter, we have explored the tools and strategies needed to understand and apply sentiment analysis to your data, from the foundational techniques of data preparation and prediction using traditional NLP methods to the advanced capabilities of GenAI. In this final part of the chapter, we will discuss how these insights can be analyzed to generate actionable strategies that can guide a brand to success across all stages of a marketing campaign.

Creating your own dataset

Before applying this analysis to your use case, we need an approach to collecting the data that captures the underlying customer sentiment related to your brand. While this chapter utilizes the Twitter Airline dataset as an example, the techniques we’ve explored are applicable regardless of the industry or data source. This section will present the general steps you can take to curate your own proprietary dataset for analysis, whether it be...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime