In this chapter, we're going to introduce another approach to classification using a family of algorithms called Support Vector Machines (SVMs). They can work in both linear and non-linear scenarios, allowing high performance in many different contexts. Together with neural networks, SVMs probably represent the best choice for many tasks where it's not easy to find a good separating hyperplane. For example, for a long time, SVMs were the best choice for MNIST dataset classification, thanks to the fact that they can capture very high non-linear dynamics using a mathematical trick, without complex modifications to the algorithm. In the first part of this chapter, we're going to discuss the basics of linear SVM, which will then be used for their non-linear extensions. We'll also discuss some techniques to control the number of parameters...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand