This chapter provides a whirlwind tour of deep learning essentials, starting from the very basics of what deep learning really means, and then moving on to other essential concepts and terminology around neural networks. The reader will be given an overview of the basic building blocks of neural networks, and how deep neural networks are trained. Concepts surrounding model training, including activation functions, loss functions, backpropagation, and hyperparameter-tuning strategies will be covered. These foundational concepts will be of great help for both beginners and experienced data scientists who are venturing into deep neural network models. Special focus has been given to how to set up a robust cloud-based deep learning environment with GPU support, along with tips for setting up an in-house deep learning environment. This should be very useful...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand