Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Artificial Intelligence for Beginners

You're reading from   Hands-On Artificial Intelligence for Beginners An introduction to AI concepts, algorithms, and their implementation

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788991063
Length 362 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
David Dindi David Dindi
Author Profile Icon David Dindi
David Dindi
Patrick D. Smith Patrick D. Smith
Author Profile Icon Patrick D. Smith
Patrick D. Smith
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The History of AI 2. Machine Learning Basics FREE CHAPTER 3. Platforms and Other Essentials 4. Your First Artificial Neural Networks 5. Convolutional Neural Networks 6. Recurrent Neural Networks 7. Generative Models 8. Reinforcement Learning 9. Deep Learning for Intelligent Agents 10. Deep Learning for Game Playing 11. Deep Learning for Finance 12. Deep Learning for Robotics 13. Deploying and Maintaining AI Applications 14. Other Books You May Enjoy

The History of AI

The term Artificial Intelligence (AI) carries a great deal of weight. AI has benefited from over 70 years of research and development. The history of AI is varied and winding, but one ground truth remains tireless researchers have worked through funding growths and lapses, promise and doubt, to push us toward achieving ever more realistic AI.

Before we begin, let's weed through the buzzwords and marketing and establish what AI really is. For the purposes of this book, we will rely on this definition:

AI is a system or algorithm that allows computers to perform tasks without explicitly being programmed to do so.

AI is an interdisciplinary field. While we'll focus largely on utilizing deep learning in this book, the field also encompasses elements of robotics and IoT, and has a strong overlap (if it hasn't consumed it yet) with generalized natural language processing research. It's also intrinsically linked with fields such as Human-Computer Interaction (HCI) as it becomes increasingly important to integrate AI with our lives and the modern world around us.

AI goes through waves, and is bound to go through another (perhaps smaller) wave in the future. Each time, we push the limits of AI with the computational power that is available to us, and research and development stops. This day and age may be different, as we benefit from the confluence of increasingly large and efficient data stores, rapid fast and cheap computing power, and the funding of some of the most profitable companies in the world. To understand how we ended up here, let's start at the beginning.

In this chapter, we will cover the following topics:

  • The beginnings of AI 1950–1974
  • Rebirth – 1980–1987
  • The modern era takes hold 19972005
  • Deep learning and the future 2012–Present
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image