Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Data Processing with Cypher

You're reading from   Graph Data Processing with Cypher A practical guide to building graph traversal queries using the Cypher syntax on Neo4j

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804611074
Length 332 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ravindranatha Anthapu Ravindranatha Anthapu
Author Profile Icon Ravindranatha Anthapu
Ravindranatha Anthapu
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Cypher Introduction
2. Chapter 1: Introduction to Neo4j and Cypher FREE CHAPTER 3. Chapter 2: Components of Cypher 4. Part 2: Working with Cypher
5. Chapter 3: Loading Data with Cypher 6. Chapter 4: Querying Graph 7. Chapter 5: Filtering, Sorting, and Aggregations 8. Chapter 6: List Expressions, UNION, and Subqueries 9. Part 3: Advanced Cypher Concepts
10. Chapter 7: Working with Lists and Maps 11. Chapter 8: Advanced Query Patterns 12. Chapter 9: Query Tuning 13. Chapter 10: Using APOC Utilities 14. Chapter 11: Cypher Ecosystem 15. Chapter 12: Tips and Tricks 16. Index 17. Other Books You May Enjoy

Summary

In this chapter, we took a deeper look at Neo4j internals to understand how a database works to execute queries. We also reviewed a few query patterns and saw the right and wrong ways to build queries and looked at troubleshooting common issues.

Cypher is an easy language to learn compared to SQL. However, it takes a bit of an effort to get the most out of it. One thing to remember is that Neo4j is a schemaless storage. This gives us great flexibility when it comes to data modeling. If your application use case starts changing, the current data model becomes too limiting, and your queries get slower, there is no need to create a completely new model. You can start adapting the existing model by adding new model concepts, thus keeping the same graph for the old and new functionality. Once you are satisfied with new model changes, it is possible to remove the remnants of the old model that are not required. Combining this kind of model flexibility with the simplicity and power...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime