Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Generative AI Application Integration Patterns

You're reading from   Generative AI Application Integration Patterns Integrate large language models into your applications

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781835887608
Length 218 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Luis Lopez Soria Luis Lopez Soria
Author Profile Icon Luis Lopez Soria
Luis Lopez Soria
Juan Pablo Bustos Juan Pablo Bustos
Author Profile Icon Juan Pablo Bustos
Juan Pablo Bustos
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction to Generative AI Patterns FREE CHAPTER 2. Identifying Generative AI Use Cases 3. Designing Patterns for Interacting with Generative AI 4. Generative AI Batch and Real-Time Integration Patterns 5. Integration Pattern: Batch Metadata Extraction 6. Integration Pattern: Batch Summarization 7. Integration Pattern: Real-Time Intent Classification 8. Integration Pattern: Real-Time Retrieval Augmented Generation 9. Operationalizing Generative AI Integration Patterns 10. Embedding Responsible AI into Your GenAI Applications 11. Other Books You May Enjoy
12. Index

Summary

In this chapter, we discussed the integration of GenAI models into real-world applications that require a systematic approach. A five-component framework can guide this process: Entry Point, Prompt Pre-Processing, Inference, Result Post-Processing, and Logging. At the entry point, user inputs aligned with the AI model’s expected modalities are accepted, whether text prompts, images, audio, etc. Prompt pre-processing then cleans and formats these inputs for security checks and optimal model usability.

The core inference component then runs the prepared inputs through the integrated GenAI models to produce outputs. This stage requires integrating with model APIs, provisioning scalable model-hosting infrastructure, and managing availability alongside cost controls. Organizations can choose self-hosting models or leveraging cloud services for inference. After inference, result post-processing techniques filter inappropriate content, select ideal outputs from multiple...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image