RNNs are among the most powerful models that enable us to take on applications such as classification, labeling on sequential data, generating sequences of text (such as with the SwiftKey Keyboard app which predicts the next word), and converting one sequence to another such as translating a language, say, from French to English. Most of the model architectures such as feedforward neural networks do not take advantage of the sequential nature of data. For example, we need the data to present the features of each example in a vector, say all the tokens that represent a sentence, paragraph, or documents. Feedforward networks are designed just to look at all the features once and map them to output. Let's look at a text example which shows why the order, or sequential nature, is important of text. I had cleaned my car and I had my car cleaned are two...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand