Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Comet for Data Science

You're reading from   Comet for Data Science Enhance your ability to manage and optimize the life cycle of your data science project

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781801814430
Length 402 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Angelica Lo Duca Angelica Lo Duca
Author Profile Icon Angelica Lo Duca
Angelica Lo Duca
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1 – Getting Started with Comet
2. Chapter 1: An Overview of Comet FREE CHAPTER 3. Chapter 2: Exploratory Data Analysis in Comet 4. Chapter 3: Model Evaluation in Comet 5. Section 2 – A Deep Dive into Comet
6. Chapter 4: Workspaces, Projects, Experiments, and Models 7. Chapter 5: Building a Narrative in Comet 8. Chapter 6: Integrating Comet into DevOps 9. Chapter 7: Extending the GitLab DevOps Platform with Comet 10. Section 3 – Examples and Use Cases
11. Chapter 8: Comet for Machine Learning 12. Chapter 9: Comet for Natural Language Processing 13. Chapter 10: Comet for Deep Learning 14. Chapter 11: Comet for Time Series Analysis 15. Other Books You May Enjoy

Exploring the TensorFlow package

TensorFlow is an open source library for deep learning released by the Google Brain team. It supports different programming languages, including Python and Javascript. You can use TensorFlow for different purposes, especially for audio and image analysis. In this chapter, we will focus on TensorFlow 2.x. Since training a model in TensorFlow could be time and resource-consuming, TensorFlow also provides many pre-trained models, stored in the TensorFlow Hub, available at the following link: https://www.tensorflow.org/hub.

Running TensorFlow on your local machine could be computationally expensive and resource-consuming, thus you use Google Colab, a collaborative framework provided by Google, to train your models. In fact, Google Colab provides you with free access to GPU and powerful machines. Google Colab is a valid alternative to Jupyter Notebook and is compatible with it. You can run your first Google Colab notebook at the following link: https...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime