Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Clojure Data Analysis Cookbook - Second Edition

You're reading from   Clojure Data Analysis Cookbook - Second Edition Dive into data analysis with Clojure through over 100 practical recipes for every stage of the analysis and collection process

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784390297
Length 372 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Importing Data for Analysis FREE CHAPTER 2. Cleaning and Validating Data 3. Managing Complexity with Concurrent Programming 4. Improving Performance with Parallel Programming 5. Distributed Data Processing with Cascalog 6. Working with Incanter Datasets 7. Statistical Data Analysis with Incanter 8. Working with Mathematica and R 9. Clustering, Classifying, and Working with Weka 10. Working with Unstructured and Textual Data 11. Graphing in Incanter 12. Creating Charts for the Web Index

Introduction

There's not much data analysis that can be done without data, so the first step in any project is to evaluate the data we have and the data that we need. Once we have some idea of what we'll need, we have to figure out how to get it.

Many of the recipes in this chapter and in this book use Incanter (http://incanter.org/) to import the data and target Incanter datasets. Incanter is a library that is used for statistical analysis and graphics in Clojure (similar to R) an open source language for statistical computing (http://www.r-project.org/). Incanter might not be suitable for every task (for example, we'll use the Weka library for machine learning later) but it is still an important part of our toolkit for doing data analysis in Clojure. This chapter has a collection of recipes that can be used to gather data and make it accessible to Clojure.

For the very first recipe, we'll take a look at how to start a new project. We'll start with very simple formats such as comma-separated values (CSV) and move into reading data from relational databases using JDBC. We'll examine more complicated data sources, such as web scraping and linked data (RDF).

You have been reading a chapter from
Clojure Data Analysis Cookbook - Second Edition - Second Edition
Published in: Jan 2015
Publisher:
ISBN-13: 9781784390297
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime