Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Building AI Intensive Python Applications

You're reading from   Building AI Intensive Python Applications Create intelligent apps with LLMs and vector databases

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781836207252
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (18) Chapters Close

Preface 1. Chapter 1: Getting Started with Generative AI 2. Chapter 2: Building Blocks of Intelligent Applications FREE CHAPTER 3. Part 1: Foundations of AI: LLMs, Embedding Models, Vector Databases, and Application Design
4. Chapter 3: Large Language Models 5. Chapter 4: Embedding Models 6. Chapter 5: Vector Databases 7. Chapter 6: AI/ML Application Design 8. Part 2: Building Your Python Application: Frameworks, Libraries, APIs, and Vector Search
9. Chapter 7: Useful Frameworks, Libraries, and APIs 10. Chapter 8: Implementing Vector Search in AI Applications 11. Part 3: Optimizing AI Applications: Scaling, Fine-Tuning, Troubleshooting, Monitoring, and Analytics
12. Chapter 9: LLM Output Evaluation 13. Chapter 10: Refining the Semantic Data Model to Improve Accuracy 14. Chapter 11: Common Failures of Generative AI 15. Chapter 12: Correcting and Optimizing Your Generative AI Application 16. Other Books You May Enjoy Appendix: Further Reading: Index

Key Python libraries

In addition to AI/ML frameworks, there are also many Python libraries that will make the experience of building your GenAI application easier. Whether you require assistance with data cleansing, formatting, or transformation, there are likely half a dozen potential Python libraries to solve every problem. The following subsections list some favorites and explain how they can assist you during your GenAI journey.

For this book, you can broadly divide these libraries into three categories:

  • General-purpose scientific libraries such as pandas, NumPy, and scikit-learn
  • MongoDB-specific libraries such as PyMongoArrow
  • Deep learning frameworks such as PyTorch and TensorFlow

The rest of this section covers one relevant and popular library from each of these categories

pandas

The pandas library is a powerful and flexible open source data manipulation and analysis library for Python. It provides data structures such as DataFrames and Series...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image