Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analytics with Java

You're reading from   Big Data Analytics with Java Data analysis, visualization & machine learning techniques

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787288980
Length 418 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
RAJAT MEHTA RAJAT MEHTA
Author Profile Icon RAJAT MEHTA
RAJAT MEHTA
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Big Data Analytics with Java FREE CHAPTER 2. First Steps in Data Analysis 3. Data Visualization 4. Basics of Machine Learning 5. Regression on Big Data 6. Naive Bayes and Sentiment Analysis 7. Decision Trees 8. Ensembling on Big Data 9. Recommendation Systems 10. Clustering and Customer Segmentation on Big Data 11. Massive Graphs on Big Data 12. Real-Time Analytics on Big Data 13. Deep Learning Using Big Data Index

Data cleaning and munging

The major amount of time spent by a developer while performing a data analysis task is spent in data cleaning or producing data in a particular format. Most of the time, while performing analysis of some log file data or getting files from some other system, there will definitely be some data cleaning involved. Data cleaning can be in many forms whether it involves discarding a certain kind of data or converting some bad data into a different format. Also note that most of the machine learning algorithms involve running algorithms on a mathematical dataset, but most of the practical datasets won't always have mathematical data. Converting text data to mathematical form is another important task that many developers need to do themselves before they can apply the data analysis tasks on the data.

If there are problems in the data that we need to resolve before we use it, then this approach of fixing the data is called as data munging. One of the common data munging...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image