Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Architecting and Building High-Speed SoCs

You're reading from   Architecting and Building High-Speed SoCs Design, develop, and debug complex FPGA based systems-on-chip

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781801810999
Length 426 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Mounir Maaref Mounir Maaref
Author Profile Icon Mounir Maaref
Mounir Maaref
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Fundamentals and the Main Features of High-Speed SoC and FPGA Designs
2. Chapter 1: Introducing FPGA Devices and SoCs FREE CHAPTER 3. Chapter 2: FPGA Devices and SoC Design Tools 4. Chapter 3: Basic and Advanced On-Chip Busses and Interconnects 5. Chapter 4: Connecting High-Speed Devices Using Buses and Interconnects 6. Chapter 5: Basic and Advanced SoC Interfaces 7. Part 2: Implementing High-Speed SoC Designs in an FPGA
8. Chapter 6: What Goes Where in a High-Speed SoC Design 9. Chapter 7: FPGA SoC Hardware Design and Verification Flow 10. Chapter 8: FPGA SoC Software Design Flow 11. Chapter 9: SoC Design Hardware and Software Integration 12. Part 3: Implementation and Integration of Advanced High-Speed FPGA SoCs
13. Chapter 10: Building a Complex SoC Hardware Targeting an FPGA 14. Chapter 11: Addressing the Security Aspects of an FPGA-Based SoC 15. Chapter 12: Building a Complex Software with an Embedded Operating System Flow 16. Chapter 13: Video, Image, and DSP Processing Principles in an FPGA and SoCs 17. Chapter 14: Communication and Control Systems Implementation in FPGAs and SoCs 18. Index 19. Other Books You May Enjoy

Summary

In this chapter, we started by exporting the ETS SoC hardware design into the Vitis IDE by generating the XSA file. We then used it in the Vitis IDE to create a custom hardware system definition for which we want to develop the application software. We have seen how a domain can be created in Vitis IDE for a given processor, and how a template application project can be generated and linked to a given domain. We then explored the BSP components and how they can be set up in the Vitis IDE for both the MicroBlaze and the Cortex-A9 processors to specify the Xilinx device drivers and the available software libraries. We then went back to the ETS SoC system architecture and we developed the software microarchitecture for both the Cortex-A9 receive path and the MicroBlaze PP acceleration software. We started doing some analytical work on the system performance and how we can compute some metrics for our ETS SoC design knowing only a few system parameters and without building the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image