Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Amazon SageMaker Best Practices

You're reading from   Amazon SageMaker Best Practices Proven tips and tricks to build successful machine learning solutions on Amazon SageMaker

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801070522
Length 348 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Randy DeFauw Randy DeFauw
Author Profile Icon Randy DeFauw
Randy DeFauw
Shelbee Eigenbrode Shelbee Eigenbrode
Author Profile Icon Shelbee Eigenbrode
Shelbee Eigenbrode
Sireesha Muppala Sireesha Muppala
Author Profile Icon Sireesha Muppala
Sireesha Muppala
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Processing Data at Scale
2. Chapter 1: Amazon SageMaker Overview FREE CHAPTER 3. Chapter 2: Data Science Environments 4. Chapter 3: Data Labeling with Amazon SageMaker Ground Truth 5. Chapter 4: Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing 6. Chapter 5: Centralized Feature Repository with Amazon SageMaker Feature Store 7. Section 2: Model Training Challenges
8. Chapter 6: Training and Tuning at Scale 9. Chapter 7: Profile Training Jobs with Amazon SageMaker Debugger 10. Section 3: Manage and Monitor Models
11. Chapter 8: Managing Models at Scale Using a Model Registry 12. Chapter 9: Updating Production Models Using Amazon SageMaker Endpoint Production Variants 13. Chapter 10: Optimizing Model Hosting and Inference Costs 14. Chapter 11: Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify 15. Section 4: Automate and Operationalize Machine Learning
16. Chapter 12: Machine Learning Automated Workflows 17. Chapter 13:Well-Architected Machine Learning with Amazon SageMaker 18. Chapter 14: Managing SageMaker Features across Accounts 19. Other Books You May Enjoy

Chapter 8: Managing Models at Scale Using a Model Registry

As you begin to deploy multiple models and manage multiple model versions, ensuring core architectural practices such as governance, traceability, and recoverability are followed is challenging without using a model registry. A model registry is a central store containing metadata specific to a model version. It includes information on how the model was built, the performance of that model, as well as where and how the model is deployed. Model registry services or solutions often include additional capabilities, such as approval workflows and notifications.

In this chapter, we'll cover the concept of a model registry and why a model registry is important for managing multiple models at scale. We'll also outline considerations you need to make when choosing a model registry implementation, in order to best meet the needs of your environment and operational requirements. For this, we'll examine two example...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime