Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Unity 5.x Game AI Programming Cookbook

You're reading from   Unity 5.x Game AI Programming Cookbook Build and customize a wide range of powerful Unity AI systems with over 70 hands-on recipes and techniques

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781783553570
Length 278 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jorge Palacios Jorge Palacios
Author Profile Icon Jorge Palacios
Jorge Palacios
Jorge Elieser P Garrido Jorge Elieser P Garrido
Author Profile Icon Jorge Elieser P Garrido
Jorge Elieser P Garrido
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Behaviors – Intelligent Movement FREE CHAPTER 2. Navigation 3. Decision Making 4. Coordination and Tactics 5. Agent Awareness 6. Board Games AI 7. Learning Techniques 8. Miscellaneous Index

Targeting a projectile

Just like it's important to predict a projectile's landing point, it's also important to develop intelligent agents capable of aiming projectiles. It wouldn't be fun if our rugby-player agents aren't capable of passing the ball.

Getting ready

Just like the previous recipe, we only need to expand the Projectile class.

How to do it...

Thanks to our previous hard work, this recipe is a real piece of cake:

  1. Create the GetFireDirection function:
    public static Vector3 GetFireDirection (Vector3 startPos, Vector3 endPos, float speed)
    {
        // body
    }
  2. Solve the corresponding quadratic equation:
    Vector3 direction = Vector3.zero;
    Vector3 delta = endPos - startPos;
    float a = Vector3.Dot(Physics.gravity, Physics.gravity);
    float b = -4 * (Vector3.Dot(Physics.gravity, delta) + speed * speed);
    float c = 4 * Vector3.Dot(delta, delta);
    if (4 * a * c > b * b)
        return direction;
    float time0 = Mathf.Sqrt((-b + Mathf.Sqrt(b * b - 4 * a * c)) / (2*a));
    float time1 = Mathf.Sqrt((-b - Mathf.Sqrt(b * b - 4 * a * c)) / (2*a));
  3. If shooting the projectile is feasible given the parameters, return a non-zero direction vector:
    float time;
    if (time0 < 0.0f)
    {
        if (time1 < 0)
            return direction;
        time = time1;
    }
    else
    {
        if (time1 < 0)
            time = time0;
        else
            time = Mathf.Min(time0, time1);
    }
    direction = 2 * delta - Physics.gravity * (time * time);
    direction = direction / (2 * speed * time);
    return direction;

How it works...

Given a fixed speed, we solve the corresponding quadratic equation in order to obtain the desired direction (when at least one time value is available), which doesn't need to be normalized because we already normalized the vector while setting up the projectile.

There's more...

Take into account that we are returning a blank direction when time is negative; it means that the speed is not sufficient. One way to overcome this is to define a function that tests different speeds and then shoots the projectile.

Another relevant improvement is to add an extra parameter of the type bool for those cases when we have two valid times (which means two possible arcs), and we need to shoot over an obstacle such as a wall:

if (isWall)
    time = Mathf.Max(time0, time1);
else
    time = Mathf.Min(time0, time1);
You have been reading a chapter from
Unity 5.x Game AI Programming Cookbook
Published in: Mar 2016
Publisher: Packt
ISBN-13: 9781783553570
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime