Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Swift 3 Object-Oriented Programming

You're reading from   Swift 3 Object-Oriented Programming Implement object-oriented programming paradigms with Swift 3.0 and mix them with modern functional programming techniques to build powerful real-world applications

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781787120396
Length 370 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Gaston C. Hillar Gaston C. Hillar
Author Profile Icon Gaston C. Hillar
Gaston C. Hillar
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Objects from the Real World to the Playground FREE CHAPTER 2. Structures, Classes, and Instances 3. Encapsulation of Data with Properties 4. Inheritance, Abstraction, and Specialization 5. Contract Programming with Protocols 6. Maximization of Code Reuse with Generic Code 7. Object-Oriented and Functional Programming 8. Extending and Building Object-Oriented Code 9. Exercise Answers

Creating mutable classes


So far, we have worked with different types of properties. When we declare stored instance properties with the var keyword, we create a mutable instance property, which means that we can change their values for each new instance we create. When we create an instance of a class that defines many public-stored properties, we create a mutable object, which is an object that can change its state.

Note

A mutable object is also known as a mutating object.

For example, let's think about a class named MutableVector3D that represents a mutable 3D vector with three public-stored properties: x, y, and z. We can create a new MutableVector3D instance and initialize the x, y, and z attributes. Then, we can call the sum method with the delta values of x, y, and z as arguments. The delta values specify the difference between the existing and new or desired value. So, for example, if we specify a positive value of 30 in the deltaX parameter, it means we want to add 30 to the X value...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime