Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Simulation for Data Science with R

You're reading from   Simulation for Data Science with R Effective Data-driven Decision Making

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781785881169
Length 398 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Matthias Templ Matthias Templ
Author Profile Icon Matthias Templ
Matthias Templ
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. R and High-Performance Computing 3. The Discrepancy between Pencil-Driven Theory and Data-Driven Computational Solutions 4. Simulation of Random Numbers 5. Monte Carlo Methods for Optimization Problems 6. Probability Theory Shown by Simulation 7. Resampling Methods 8. Applications of Resampling Methods and Monte Carlo Tests 9. The EM Algorithm 10. Simulation with Complex Data 11. System Dynamics and Agent-Based Models Index

Chapter 7. Resampling Methods

 

"Dear friend, theory is all gray, and the golden tree of life is green."

 
 --– Johann Wolfgang von Goethe, Faust

For a lot of people, classical statistical inference is hard to understand, because it is packed with mathematics. Moreover, it is often very difficult and complex to demonstrate the properties of even relatively simple estimators in an analytical manner. Often it is even impossible to express the properties of estimators using mathematical formulas.

In the case of estimating confidence intervals or by carrying out a statistical test, distribution requirements must be assumed when applying classical statistics, basically the distribution of a test statistic. The mathematical formulation for estimating a classical confidence interval for a parameter Resampling Methods (and point estimate Resampling Methods) can often be very complex or even impossible. Imagine you want classical confidence intervals not only for the very simple arithmetic mean...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image