Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Reproducible Data Science with Pachyderm

You're reading from   Reproducible Data Science with Pachyderm Learn how to build version-controlled, end-to-end data pipelines using Pachyderm 2.0

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781801074483
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Svetlana Karslioglu Svetlana Karslioglu
Author Profile Icon Svetlana Karslioglu
Svetlana Karslioglu
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Introduction to Pachyderm and Reproducible Data Science
2. Chapter 1: The Problem of Data Reproducibility FREE CHAPTER 3. Chapter 2: Pachyderm Basics 4. Chapter 3: Pachyderm Pipeline Specification 5. Section 2:Getting Started with Pachyderm
6. Chapter 4: Installing Pachyderm Locally 7. Chapter 5: Installing Pachyderm on a Cloud Platform 8. Chapter 6: Creating Your First Pipeline 9. Chapter 7: Pachyderm Operations 10. Chapter 8: Creating an End-to-End Machine Learning Workflow 11. Chapter 9: Distributed Hyperparameter Tuning with Pachyderm 12. Section 3:Pachyderm Clients and Tools
13. Chapter 10: Pachyderm Language Clients 14. Chapter 11: Using Pachyderm Notebooks 15. Other Books You May Enjoy

Reviewing hyperparameter tuning techniques and strategies

Hyperparameter tuning or hyperparameter optimization is a technique that ML professionals use to determine the best parameters to solve a specific ML problem. In different problems, you'd need to tune different types of parameters, such as weights in neural networks, or the number of trees in the Random Forest algorithm, or the learning rate of your model. Ultimately, selecting the best parameters helps you determine which method is best to solve a problem. A data scientist needs to understand the tunable parameters in the algorithm they use to be able to optimize them correctly.

There are a number of ML algorithms that help solve the hyperparameter optimization problem. Let's review the most common ones.

Grid search

Grid search is the simplest algorithm and is sometimes called a brute-force approach to hyperparameter optimization. This method calculates the optimum values of hyperparameters.

In Grid search...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime