Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning Cookbook

You're reading from   Python Machine Learning Cookbook 100 recipes that teach you how to perform various machine learning tasks in the real world

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781786464477
Length 304 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The Realm of Supervised Learning FREE CHAPTER 2. Constructing a Classifier 3. Predictive Modeling 4. Clustering with Unsupervised Learning 5. Building Recommendation Engines 6. Analyzing Text Data 7. Speech Recognition 8. Dissecting Time Series and Sequential Data 9. Image Content Analysis 10. Biometric Face Recognition 11. Deep Neural Networks 12. Visualizing Data Index

Transforming data into the time series format


We will start by understanding how to convert a sequence of observations into time series data and visualize it. We will use a library called pandas to analyze time series data. Make sure that you install pandas before you proceed further. You can find the installation instructions at http://pandas.pydata.org/pandas-docs/stable/install.html.

How to do it…

  1. Create a new Python file, and import the following packages:

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
  2. Let's define a function to read an input file that converts sequential observations into time-indexed data:

    def convert_data_to_timeseries(input_file, column, verbose=False):
  3. We will use a text file consisting of four columns. The first column denotes the year, the second column denotes the month, and the third and fourth columns denote data. Let's load this into a NumPy array:

        # Load the input file
        data = np.loadtxt(input_file, delimiter=',')
  4. As this is arranged...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image